Bases: CLISubcommand
 The run-batch subcommand for vLLM CLI.
  Source code in vllm/entrypoints/cli/run_batch.py
 |  | class RunBatchSubcommand(CLISubcommand):
    """The `run-batch` subcommand for vLLM CLI."""
    name = "run-batch"
    @staticmethod
    def cmd(args: argparse.Namespace) -> None:
        from vllm.entrypoints.openai.run_batch import main as run_batch_main
        logger.info(
            "vLLM batch processing API version %s", importlib.metadata.version("vllm")
        )
        logger.info("args: %s", args)
        # Start the Prometheus metrics server.
        # LLMEngine uses the Prometheus client
        # to publish metrics at the /metrics endpoint.
        if args.enable_metrics:
            from prometheus_client import start_http_server
            logger.info("Prometheus metrics enabled")
            start_http_server(port=args.port, addr=args.url)
        else:
            logger.info("Prometheus metrics disabled")
        asyncio.run(run_batch_main(args))
    def subparser_init(
        self, subparsers: argparse._SubParsersAction
    ) -> FlexibleArgumentParser:
        from vllm.entrypoints.openai.run_batch import make_arg_parser
        run_batch_parser = subparsers.add_parser(
            self.name,
            help="Run batch prompts and write results to file.",
            description=(
                "Run batch prompts using vLLM's OpenAI-compatible API.\n"
                "Supports local or HTTP input/output files."
            ),
            usage="vllm run-batch -i INPUT.jsonl -o OUTPUT.jsonl --model <model>",
        )
        run_batch_parser = make_arg_parser(run_batch_parser)
        run_batch_parser.epilog = VLLM_SUBCMD_PARSER_EPILOG.format(subcmd=self.name)
        return run_batch_parser
 | 
     class-attribute instance-attribute  
   
     staticmethod  
    Source code in vllm/entrypoints/cli/run_batch.py
 |  | @staticmethod
def cmd(args: argparse.Namespace) -> None:
    from vllm.entrypoints.openai.run_batch import main as run_batch_main
    logger.info(
        "vLLM batch processing API version %s", importlib.metadata.version("vllm")
    )
    logger.info("args: %s", args)
    # Start the Prometheus metrics server.
    # LLMEngine uses the Prometheus client
    # to publish metrics at the /metrics endpoint.
    if args.enable_metrics:
        from prometheus_client import start_http_server
        logger.info("Prometheus metrics enabled")
        start_http_server(port=args.port, addr=args.url)
    else:
        logger.info("Prometheus metrics disabled")
    asyncio.run(run_batch_main(args))
 | 
        
    Source code in vllm/entrypoints/cli/run_batch.py
 |  | def subparser_init(
    self, subparsers: argparse._SubParsersAction
) -> FlexibleArgumentParser:
    from vllm.entrypoints.openai.run_batch import make_arg_parser
    run_batch_parser = subparsers.add_parser(
        self.name,
        help="Run batch prompts and write results to file.",
        description=(
            "Run batch prompts using vLLM's OpenAI-compatible API.\n"
            "Supports local or HTTP input/output files."
        ),
        usage="vllm run-batch -i INPUT.jsonl -o OUTPUT.jsonl --model <model>",
    )
    run_batch_parser = make_arg_parser(run_batch_parser)
    run_batch_parser.epilog = VLLM_SUBCMD_PARSER_EPILOG.format(subcmd=self.name)
    return run_batch_parser
 |