class RequestLogger:
    def __init__(self, *, max_log_len: int | None) -> None:
        self.max_log_len = max_log_len
    def log_inputs(
        self,
        request_id: str,
        prompt: str | None,
        prompt_token_ids: list[int] | None,
        prompt_embeds: torch.Tensor | None,
        params: SamplingParams | PoolingParams | BeamSearchParams | None,
        lora_request: LoRARequest | None,
    ) -> None:
        max_log_len = self.max_log_len
        if max_log_len is not None:
            if prompt is not None:
                prompt = prompt[:max_log_len]
            if prompt_token_ids is not None:
                prompt_token_ids = prompt_token_ids[:max_log_len]
        logger.debug(
            "Request %s details: prompt: %r, "
            "prompt_token_ids: %s, "
            "prompt_embeds shape: %s.",
            request_id,
            prompt,
            prompt_token_ids,
            prompt_embeds.shape if prompt_embeds is not None else None,
        )
        logger.info(
            "Received request %s: params: %s, lora_request: %s.",
            request_id,
            params,
            lora_request,
        )
    def log_outputs(
        self,
        request_id: str,
        outputs: str,
        output_token_ids: Sequence[int] | None,
        finish_reason: str | None = None,
        is_streaming: bool = False,
        delta: bool = False,
    ) -> None:
        max_log_len = self.max_log_len
        if max_log_len is not None:
            if outputs is not None:
                outputs = outputs[:max_log_len]
            if output_token_ids is not None:
                # Convert to list and apply truncation
                output_token_ids = list(output_token_ids)[:max_log_len]
        stream_info = ""
        if is_streaming:
            stream_info = " (streaming delta)" if delta else " (streaming complete)"
        logger.info(
            "Generated response %s%s: output: %r, "
            "output_token_ids: %s, finish_reason: %s",
            request_id,
            stream_info,
            outputs,
            output_token_ids,
            finish_reason,
        )